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Path Planning
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● Autonomous vehicles
● Drones
● Factory robots
● Household robots

Path Planning is a fundamental part of any 
application that requires navigation.
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https://giphy.com/gifs/battlefield-navigate-selfdriving-AmqDSvVwywm7m
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Path Planning
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A* search (popular heuristic algorithm) ⇒ Not differentiable
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Path Planning
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Value Iteration Networks (Tamar et al., 2016) ⇒ Fully differentiable!

• Can be used as a path planner module in neural architectures while 
maintaining end-to-end differentiability.

• VINs have become an important path planner component used in 
many recent works:

• QMDP-Net: Deep learning for planning under partial observability (Karkus et al., 2017)

• Cognitive mapping and planning for visual navigation (Gupta et al., 2017)

• Unifying map and landmark based representations for visual navigation (Gupta et al., 2017)

• Memory Augmented Control Networks (Khan et al., 2018)

• Deep Transfer in RL by Language Grounding (Narasimhan 2017)
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Outline of this talk

Problem: VINs are difficult to optimize.

1. Overview of VIN

2. We reframe VIN as a recurrent-convolutional network.

3. From this perspective, we propose architectural improvements 
to VIN. ⇒ Gated Path Planning Networks (GPPN)

4. We show that GPPN performs better & alleviates many 
optimization issues of VIN.
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Methods
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Recurrent-Convolutional Network with:
• An unconventional nonlinearity (max-pooling)
• Restriction of kernel sizes to 3
• A hidden dimension of 1
Non-gated RNNs are known to be difficult to optimize.

nonlinearity
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GPPN:
• Replace max-pooling activation with a 

well-established gated recurrent operator
(e.g., LSTM).

• Allow kernel size F > 3.
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Gated Path Planning Networks (GPPN)
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The gated LSTM update is well-known to alleviate many of 
the optimization problems with standard recurrent networks.

VIN update:

GPPN update:



Experimental Setup
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Maze environments
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Test VIN & GPPN on a 
variety of settings such as:

• Training dataset size

• Maze size

• Maze Transition Models

Goal

Agent
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Maze environments
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Test VIN & GPPN on a 
variety of settings such as:

• Training dataset size

• Maze size

• Maze Transition Models
• NEWS
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Maze environments
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Test VIN & GPPN on a 
variety of settings such as:

• Training dataset size

• Maze size

• Maze Transition Models
• NEWS
• Moore
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Maze environments
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Test VIN & GPPN on a 
variety of settings such as:

• Training dataset size

• Maze size

• Maze Transition Models
• NEWS
• Moore

• Differential Drive
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Maze environments
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First-person RGB images

3D ViZDoom Environment



Experimental Results
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Our GPPN outperforms VIN in a variety of metrics:

• Learning speed
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GPPN learns faster.
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Our GPPN outperforms VIN in a variety of metrics:

• Learning speed
• Performance
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GPPN performs better.

Test perform ance on 15  × 15 m azes w ith  dataset size  10k and best (K , F) 
settings for each m odel.
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• Learning speed

• Performance

• Generalization

Our GPPN outperforms VIN in a variety of metrics:

Test perform ance on 15  × 15 m azes w ith  N EW S m echanism  and best (K , F) 

settings for each m odel.
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GPPN generalizes better with less data.
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Our GPPN outperforms VIN in a variety of metrics:

GPPN is more stable to hyperparameter changes.• Learning speed
• Performance
• Generalization
• Hyperparameter sensitivity
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Test perform ance on 15  × 15 m azes w ith  D ifferential D rive  m echanism , dataset 
size  100k, and best (K , F) settings for each m odel.
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Our GPPN outperforms VIN in a variety of metrics:

• Learning speed
• Performance
• Generalization
• Hyperparameter sensitivity
• Random seed sensitivity
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GPPN exhibits less variance.

Test perform ance on 15  × 15 m azes w ith  dataset size  100k and best (K , F) 
settings for each m odel.
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Conclusion

• GPPN is a more general architecture that relaxes the architectural 
inductive bias of VIN.
• Performs better & alleviates many optimization issues of VIN.
• Our results suggest that path planning architectures need not strictly 

resemble path-finding algorithms like value iteration.
• By looking at VIN as a recurrent-convolutional network, we can 

explore other RNN architectural improvements:
• Gated recurrent operators (Our work)
• Multiplicative Integration (Wu et al., 2016)
• Orthogonality constraints (Vorontsov et al., 2017)
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Conclusion

• GPPN is a more general architecture that relaxes the architectural 
inductive bias of VIN.
• Performs better & alleviates many optimization issues.
• Our results suggest that path planning architectures need not strictly 

resemble path-finding algorithms like value iteration.
• By looking at VIN as a recurrent-convolutional network, we can 

explore other RNN architectural improvements:
• Gated recurrent operators (Our work)
• Multiplicative Integration (Wu et al., 2016)
• Orthogonality constraints (Vorontsov et al., 2017)
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Future directions
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Lisa Lee Emilio Parisotto Devendra Chaplot Russ SalakhutdinovEric Xing

Code available on GitHub:
https://github.com/lileee/gated-path-planning-networks

Check out our poster! 
Today 18:15 - 21:00 @ Hall B (#134)


