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Path Planning
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Path Planning is a fundamental part of any
application that requires navigation.

e Autonomous vehicles
e Drones

e Factory robots

e Household robots

https://giphy.com/gifs/battlefield-navigate-selfdriving-AmgDSvVwywm7m
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Path Planning

A* search (popular heuristic algorithm) = Not differentiable
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Path Planning

Value Iteration Networks (Tamar et al., 2016) = Fully differentiable!

* Can be used as a path planner module in neural architectures while
maintaining end-to-end differentiability.

* VINs have become an important path planner component used in
many recent works:

* QMDP-Net: Deep learning for planning under partial observability
Cognitive mapping and planning for visual navigation

Unifying map and landmark based representations for visual navigation
Memory Augmented Control Networks

Deep Transfer in RL by Language Grounding
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Outline of this talk

Problem: VINs are difficult to optimize.

1. Overview of VIN
2. We reframe VIN as a recurrent-convolutional network.

3. From this perspective, we propose architectural improvements
to VIN. = Gated Path Planning Networks (GPPN)

4. We show that GPPN performs better & alleviates many
optimization issues of VIN.
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Methods



Overview of VIN
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Overview of VIN
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Recurrent-Convolutional Network with:
* An unconventional nonlinearity (max-pooling)

e Restriction of kernel sizes to 3
* A hidden dimension of 1

Non-gated RNNs are known to be difficult to optimize.

(Lee & Parisotto et al., 2018)
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Gated Path Planning Networks (GPPN)
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GPPN: : nonlinearity convolution :
* Replace max-pooling activation with a | ! , ! '

well-established gated recurrent operator V%) = LSTM Z (Wé?R[ F t WVV(k 1))
(e.g., LSTM).

* Allow kernel size F > 3.

a

kernel size

Gated Path Planning Networks (Lee & Parisotto et al., 2018) Carnegie Mellon University



Gated Path Planning Networks (GPPN)

The gated LSTM update is well-known to alleviate many of
the optimization problems with standard recurrent networks.

VINupdate: V(9 = max (WERyy; + wyvi)
a

F]

: (k—1)
GPPN update: v = LSTM <z (WfR[F] + WCYV[ ))

a
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Experimental Setup



Maze environments

Test VIN & GPPN on a
variety of settings such as:

* Training dataset size
* Maze size
* Maze Transition Models
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Maze environments

Test VIN & GPPN on a
variety of settings such as:

* Training dataset size
* Maze size

* Maze Transition Models
« NEWS
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Maze environments

Test VIN & GPPN on a
variety of settings such as:

* Training dataset size
* Maze size

* Maze Transition Models

* NEWS
* Moore
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Maze environments

Test VIN & GPPN on a
variety of settings such as:

* Training dataset size
* Maze size

* Maze Transition Models

* NEWS
* Moore

e Differential Drive
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3D ViZDoom Environment

Maze environments

First-person RGB images
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Experimental Results



Our GPPN outperforms VIN in a variety of metrics:

* Learning speed GPPN learns faster.

100 — GPPN

% Optimal: Percentage of
states whose predicted paths 90 VIN
have optimal length.

unstable
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Test performance on 15 X 15 mazes with NEWS mechanism, dataset size 25k,

and best (K, F) settings for each model.
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Our GPPN outperforms VIN in a variety of metrics:

. .
Leammg speed GPPN performs better.
* Performance
100 Performance difference
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Test performance on 15 X 15 mazes with dataset size 10k and best (K, F)

settings for each model.
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Our GPPN outperforms VIN in a variety of metrics:

. .
Learning speed GPPN generalizes better with less data.
* Performance
Performance
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Test performance on 15 X 15 mazes with NEWS mechanism and best (K, F)

settings for each model.
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Our GPPN outperforms VIN in a variety of metrics:

. .
Learning speed GPPN is more stable to hyperparameter changes.
* Performance 100 atter
* Generalization EE 80
egs o = 60
* Hyperparameter sensitivity gl 20 GPPN
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Hyperparameter Setting Index
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Test performance on 15 X 15 mazes with Differential Drive mechanism, dataset

size 100k, and best (K, F) settings for each model.
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Our GPPN outperforms VIN in a variety of metrics:

’ Leammg speed GPPN exhibits less variance.

* Performance
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Test performance on 15 X 15 mazes with dataset size 100k and best (K, F)

settings for each model.
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Conclusion

* GPPN is a more general architecture that relaxes the architectural
inductive bias of VIN.
* Performs better & alleviates many optimization issues of VIN.

* Our results suggest that path planning architectures need not strictly
resemble path-finding algorithms like value iteration.

k-1
VIN: y () = max (Wme + WC{’V[(B] ))

GPPN: V() = LSTM (Z (WER ) + W;’V[;k]_l))>

a
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Conclusion

* GPPN is a more general architecture that relaxes the architectural
inductive bias of VIN.
* Performs better & alleviates many optimization issues.

* QOur results sug§est that path planning architectures need not strictly

resemble path-finding algorithms like value iteration.

* By looking at VIN as a recurrent-convolutional network, we can
explore other RNN architectural improvements:

» Gated recurrent operators (Our work)
* Multiplicative Integration (Wu et al., 2016)

* Orthogonality constraints (Vorontsov et al., 2017) } Future directions
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Code available on GitHub:
https://github.com/lileee/gated-path-planning-networks
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