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1. Introduction

Coxeter matroids, which are based on a Coxeter group W and a standard parabolic subgroup P of W , are a
generalization of ordinary matroids1. Associated with each Coxeter matroid is the Coxeter matroid polytope,
which turns out to be an equivalent way to define Coxeter matroids.

In this paper, we will focus primarily on the Coxeter matroids for the Coxeter groups W = An−1 = Sn (the
symmetric group) and W = BCn (the hyperoctahedral group).

1.1. The symmetric group. Sn is the group whose elements are all the permutations of E = [n], and is
generated by the set of adjacent transpositions, {s1, s2, ..., sn−1} where si := (i, i+ 1).

1.2. The hyperoctaheral group. BCn is the group of symmetries of the n-cube. We can represent BCn
as a permutation on the set E = {1, 2, ..., n, 1∗, 2∗, ..., n∗}, corresponding to the facets of the n-cube (with i
the facet opposite i∗). Then BCn is generated by the involutions s1 := (1, 2)(1∗, 2∗), s2 := (2, 3)(2∗, 3∗), ...,
sn−1 := (n− 1, n)((n− 1)∗, n∗), sn := (n, n∗).

2. Coxeter Matroid

2.1. Induced Bruhat ordering. Let ≤ denote the Bruhat order2 on W . The w-Bruhat order (or shifted
Bruhat order with center w) ≤w is defined as follows: u ≤w v means that w−1v ≤ w−1u.

Bruhat order on W induces a well-defined partial order (also called Bruhat order) on the factor set WP =
W/P , where tP ≤ rP if there exist s ∈ tP , q ∈ rP such that s ≤ q in ordinary Bruhat order. For two cosets
A,B ∈WP and element w ∈W , A ≤w B means that w−1A ≤ w−1B.

2.2. Parabolic subgroup. Let Π be a simple system in the root system Φ with corresponding system of
reflections r1, ..., rm. For a subset I ⊆ [m], the subgroup

WI := 〈ri : i ∈ I〉
is called a standard parabolic subgroup of W . A subgroup conjugate in W to a standard parabolic subgroup
is called parabolic.

2.3. Coxeter matroid. Let W be a Coxeter group, and P a standard parabolic subgroup of W . We define
M⊆WP to be a Coxeter matroid if M satisfies the Maximality Property :

For any w ∈W , there is a unique A ∈M such that, for all B ∈M, B ≤w A.

Although the Maximality Property is a nice, clean condition from a theoretical perspective, it is rather
difficult to check directly, even on small examples. Fortunately, the Gelfand-Serganova theorem (presented
later) provides an equivalent geometric condition which is easier to check.

1For the definition of an ordinary matroid, please see Appendix A.
2The Bruhat order ≤ is defined as follows. Let u, v ∈ W . Then u ≤ v if and only if there exists a reduced expression

v = si1si2 · · · sip for v such that u = sij1 sij2 · · · sijq for some j1, j2, ..., jq with 1 ≤ j1 < j2 < · · · < jq ≤ p.
1
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2.4. Ordinary matroids. In the special case when W = Sn and P is a maximal3 parabolic subgroup,
Coxeter matroids are equivalent to ordinary matroids. Here we give an example for W = S4.

2.4.1. Example. Let P = W{1,3} = 〈s1, s3〉 be a maximal standard parabolic subgroup of S4. Thus

P = <(12), (34)> = {1234, 2134, 1243, 2143}

where the last representation comes from thinking of the permutations in S4 as permuting the word 1234,
hence this word itself represents the identity element of the group. Similarly, the elements of a left coset
may be represented by words, such as

(23)P = {1324, 3124, 1342, 3142}.

Every left coset of P corresponds to a 2-element subset of E, namely, the two elements which appear, in
some order, as the first two symbols in each word of the coset. For example, P corresponds to the subset
{1, 2}, and (23)P corresponds to the subset {1, 3}. Thus a Coxeter matroid in SP4 may be represented by a
collection of 2-element subsets of E which must, obviously, correspond to cosets satisfying the Maximality
Property.

For example, letM = {12, 13, 14, 23, 24}, where ab is an abbreviation of the two-element subset {a, b} of E.
Each pair listed corresponds to a left coset of P , namely

{1, 2} ↔ P = {1234, 2134, 1243, 2143}
{1, 3} ↔ (23)P = {1324, 3124, 1342, 3142}
{1, 4} ↔ (24)P = {1432, 4132, 1423, 4123}
{2, 3} ↔ (13)P = {3214, 2314, 3241, 2341}
{2, 4} ↔ (14)P = {4231, 2431, 4213, 2413}.

Using the Gelfand-Serganova theorem, we will later prove in Section 4.1 that M is a Coxeter matroid. But
also, M can be realized as an ordinary matroid4 of rank 2 on E = [4] whose bases B consist of all 2-element
subsets except {3, 4}.

3. A more geometric perspective

Associated with each finite Coxeter group W is the Coxeter complex, a cell complex whose chambers are
in bijection with the elements of W . The geometric concepts associated with the Coxeter complex form
the language of the theory of Coxeter matroids. For example, as mentioned above, the Gelfand-Serganova
theorem provides an equivalent geometric condition for the Maximality Property, by interpreting Coxeter
matroids as Coxeter matroid polytopes.

3.1. Terminology. A finite set Σ of hyperplanes in the affine space ARn is called a hyperplane arrangement.
We call hyperplanes in Σ walls of Σ.

The hyperplanes in Σ cut the space ARn and each other in pieces called faces. More formally, a hyperplane
cuts the space ARn into two halfspaces V + and V −. For two points a, b ∈ ARn, we write a ∼ b if, for
each hyperplane H ∈ Σ, a and b belong to one and the same of two half spaces V +, V − determined by H.
Obviously ∼ is an equivalence relation. Its equivalence classes are called faces of Σ.

A face of Σ that is not contained in any hyperplane of Σ is called a chamber. A facet of a chamber C is a
face of dimension n − 1 on the boundary of C. It follows from the definition that a facet P belongs to a
unique hyperplane H ∈ Σ, called a wall of the chamber C. (For an example, see Fig. 1.)

3A parabolic subgroup WI is maximal if I ⊂ [m] is obtained by discarding one index in [m].
4To see this, we can check the basis axioms for ordinary matroids (see Appendix A).
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Figure 1. The three lines divide AR2 into seven open faces A, ..., G (chambers), nine 1-
dimensional faces (−∞, a), (a, b), ..., (c,∞), and three 0-dimensional faces a, b, c. A facet of
the chamber A is the 1-dimensional interval (a, b), which belongs to the unique line passing
through a and b.

3.2. The Coxeter complex. Let Φ be a root system in the euclidean space V , and fix a simple system
Π = {α1, ..., αm} with corresponding system of simple reflections r1, ..., rm.

A wall Hα corresponding to a root α cuts the space V into two open half-spaces V +
α = {λ ∈ V : (λ, α) > 0}

and V −α = {λ ∈ V : (λ, α) < 0}. The fixed hyperplanes of all the reflections give a hyperplane arrangement,
with each root α ∈ Φ being orthogonal to one of the hyperplanes in the arrangement. Since all the hyperplanes
intersect at the origin, the chambers are open polyhedral cones5 (see Fig. 2). LetW be the set of all chambers
associated with the root system Φ.

The chamber E =
⋂
α∈Π

V +
α is the fundamental chamber of W (with respect to Π). Thus

E = {λ ∈ V : (λ, α) > 0 ∀α ∈ Π}.

The group W is simply transitive on W, i.e. for any two chambers C and D in W there exists a unique
element w ∈W such that D = wC (See [1], Thm 5.7.3). Moreover, the map

w 7→ wE

is a one-to-one correspondence between the elements in W and chambers in W (See [1], Thm 5.8.2).

Figure 2. A chamber in the Coxeter complex of S4 (left) and of BC3 (right).

5A polyhedral cone is a cone which is an intersection of finitely many closed half-spaces, with the origin 0 belonging to the

bounding hyperplane of each of these half-spaces.
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For each subset I ⊆ [m], define

CI :=

{
λ ∈ V :

(λ, αi) = 0 ∀i ∈ I
(λ, αi) > 0 ∀i /∈ I

}
.

Thus CI is an intersection of certain hyperplanes Hα and certain open half-spaces V +
α , and is a face of the

complex. It is clear that the sets CI partition E, with C∅ = E and C[m] = {0}.

Since W is simply transitive on the setW of all chambers, it follows that V is partitioned by the collection C
of all sets wCI (w ∈W, I ⊂ [m]). More precisely, for each fixed I ⊂ [m], the sets wCI and w′CI are disjoint
unless w and w′ lie in the same left coset in W/WI , in which case they coincide. For distinct I and J , all
sets wCI and w′CJ are disjoint. We call C the Coxeter complex of W . Note that W ⊂ C. Any set wCI is
called a face of type I.

3.2.1. Examples. The Coxeter complex of Sn is the barycentric subdivision of the regular n− 1-dimensional
simplex, and its roots are parallel to the edges of the simplex (see Fig. 3a).

A Coxeter matroid for W = BCn is called a symplectic matroid. Its Coxeter complex is the barycentric
subdivision of the n-cube, and its roots are parallel to the edges of the n-cube and to the diagonals of the
2-dimensional faces of the n-cube (see Fig. 3b).

(a) The Coxeter complex of S4, which is generated
by the hyperplanes of symmetry of the tetrahedron.
(Recall that S4 is isomorphic to the octahedral group
which acts on its 4 vertices.)

(b) The Coxeter complex of BC3, which is generated by
the hyperplanes of symmetry of the cube.

Figure 3. The Coxeter complexes of Sn and BCn. Here, the hyperplanes of all the reflec-
tions are shown by their lines of intersection with the faces of the simplex and the cube.

3.3. Parabolic subgroups and faces of type I. The characterization of parabolic subgroups as isotropy
groups yields a geometric interpretation of Coxeter matroids.

Proposition 3.3.1. For I ⊂ [m], the isotropy group6 of CI is precisely the parabolic subgroup WI .

6If X ⊂ V is a set of vectors, then its isotropy group CW (X) is the group

CW (X) = {w ∈W : wλ = λ ∀λ ∈ X}
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Then it immediately follows that the cosets of the parabolic subgroup WI are in bijection with the faces of
the complex of type I. So if M is any subset of the cosets of WI in W , then M corresponds to a collection
of faces of type I.

3.3.1. Faces of type I. For a subset I ⊂ [m] obtained by removing one index from [m], let ξ(I) be the unique
index in [m] omitted from I.

The vertices of the complexW correspond to the left cosets wWI , where WI is a maximal parabolic subgroup.
In the case of Sn, each vertex of type I is the barycenter of a face of cardinality ξ(I) of the simplex. In the
case of BCn, each vertex of type I is the barycenter of a face of the cube of dimension n− ξ(I) (see Fig. 4).

The type of a larger dimensional face is just the intersection of the types of its vertices. For example, in the
Coxeter complex of BC3, any edge connecting the barycenter of an edge of the cube with a vertex of the
cube would be a face of W of type {1}, whereas an edge connecting an edge-barycenter to a face-barycenter
would be a face of W of type {3}.

(a) Faces of type {2, 3} (b) Faces of type {1, 3} (c) Faces of type {1, 2}

Figure 4. The faces corresponding to a maximal parabolic subgroup WI of W = BC3

3.4. The polytope associated with M. For a subset M ⊆ WP , let δ(M) denote the set of barycenters
of the faces of W which correspond to M. Note that if P is a maximal parabolic subgroup, then δ(M) is
just a subset of the vertices of W, but if P is non-maximal, then we are actually taking barycenters of faces
of W, which is itself the barycentric subdivision of the simplex or cube. Now we define the polytope7 of M,
or ∆M, to be the convex hull of points in δ(M).

M is a Coxeter matroid if and only if ∆M is a Coxeter matroid polytope. (For a formal definition of a
Coxeter matroid polytope, see Appendix B.)

3.5. Gelfand-Serganova Theorem. We finally present the theorem which is the keystone to the whole
theory of Coxeter matroids.

Theorem 3.5.1. Let W be a finite Coxeter group, P a parabolic subgroup in W , M a subset in WP , and
∆M the polytope associated with M.

Then the following conditions are equivalent:

(1) M is a Coxeter matroid.

(2) ∆M is convex and every edge of ∆M is parallel to a root in Φ.

A useful reformulation of the Gelfand-Serganova Theorem is as follows:

7A polyhedron is the intersection of a finite number of closed half-spaces. Since half-spaces are convex, a polyhedron is also

convex. A bounded polyhedron is called a polytope.
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Theorem 3.5.2. A subset M ⊆ WP is a Coxeter matroid if and only if, for any pair of adjacent vertices
δA and δB of ∆M, there exists a reflection s ∈ W such that sδA = δB (and also sδB = δA, sB = A, and
sA = B).

4. Examples

4.1. A Coxeter matroid polytope forW = S4. Consider the previous exampleM = {12, 13, 14, 23, 24} ⊆
WP from Section 2.4.1, where W = S4 and P = W{1,3}. The corresponding polytope ∆M is shown in Fig.
5a. It can be easily checked that every edge of ∆M is parallel to a root in Φ (recall that the roots are parallel
to the edges of the simplex), and hence by the Gelfand-Serganova theorem, M is a Coxeter matroid.

4.2. A non-example. For W = S4 and the same maximal standard parabolic subgroup P = W{1,3} from

Section 2.4.1, consider the subsetM = {12, 13, 23, 24} ⊆WP . The corresponding polytope ∆M is shown in
Fig. 5b. Clearly, {13, 24} is an edge of ∆M which is not parallel to any edge of the simplex, and thereforeM
is not a Coxeter matroid. Or alternatively, since the edge {13, 24} is not parallel to any edge of the polytope,
we can easily see that there is no reflection in W that sends {1, 3} to {2, 4}, and hence by Theorem 3.5.2,
M is not a Coxeter matroid.

Additionally, it can be checked using the matroid basis axioms that the collectionM is not the collection of
bases of an ordinary matroid of rank 2 on the set E = [4].

(a) The Coxeter matroid polytope of Example 2.4.1 (b) The non-matroid polytope of Example 4.2

Figure 5. The polytopes from Sections 4.1 and 4.2, for W = S4 and P = W{1,3} = 〈s1, s3〉

4.3. A symplectic matroid polytope. Take W = BC3, and let P = W{1,3} = 〈s1, s3〉 be a maximal
standard parabolic subgroup of BC3. We can think of the permutations in BC3 as permuting the word
1233∗2∗1∗, and hence

P = 〈(1, 2)(1∗, 2∗), (3, 3∗)〉 = {1233∗2∗1∗, 2133∗1∗2∗, 123∗32∗1∗, 213∗31∗2∗}.

Similarly to Example 4.3 above, every left coset of P corresponds to a 2-element subset of E, namely, the
two elements which appear (in some order) as the first two symbols in each word of the coset. For example,

{1, 3} ↔ (23)(2∗3∗)P = {1322∗3∗1∗, 3122∗1∗3∗, 132∗23∗1∗, 312∗21∗3∗}.
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Let M = {12, 13, 1∗2, 1∗3∗, 23, 23∗} ⊆WP where each pair listed corresponds to a left coset of P , namely

{1, 2} ↔ P = {1233∗2∗1∗, 2133∗1∗2∗, 123∗32∗1∗, 213∗31∗2∗}
{1, 3} ↔ (23)(2∗3∗)P = {1322∗3∗1∗, 3122∗1∗3∗, 132∗23∗1∗, 312∗21∗3∗}
{1∗, 2} ↔ (33∗)(11∗)P = {1∗23∗32∗1, 21∗3∗312∗, 1∗233∗2∗1, 21∗33∗12∗}
{1∗, 3∗} ↔ (13∗2∗)(1∗32)P = {3∗1∗22∗13, 1∗3∗22∗31, 3∗1∗2∗213, 1∗3∗2∗231}
{2, 3} ↔ (13)(1∗3∗)P = {3211∗2∗3∗, 2311∗3∗2∗, 321∗12∗3∗, 231∗13∗2∗}
{2, 3∗} ↔ (13∗)(1∗3)P = {3∗21∗12∗3, 23∗1∗132∗, 3∗211∗2∗3, 23∗11∗32∗}.

The corresponding polytope ∆M is given in Fig. 6. It can be checked that every edge of ∆M is parallel to
a root in Φ, and hence by the Gelfand-Serganova theorem, M is a Coxeter matroid.

Figure 6. The symplectic matroid polytope of Example 4.3

In similar fashion, we may check that the left cosets of maximal parabolic subgroups P = WI correspond to
ξ(I)-element subsets of E, and hence to barycenters of n− ξ(I)-dimensional faces of the n-cube.
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Appendix A. Ordinary matroids

One of the many equivalent definitions of an ordinary matroid is the following:

Definition. A matroid is a pair (E,B) where E is a finite set and B is a collection of subsets of E (called the
”bases” of the matroid), with the following properties:

(1) B 6= ∅,

(2) (Basis exchange property) For all A,B ∈ B and a ∈ A\B, there exists an element b ∈ B\A such that
A\{a} ∪ {b} ∈ B.

Example. An example of a matroid of rank 2 on the set E = [4] = {1, 2, 3, 4} would be (E,B) with B =
{12, 13, 14, 23, 24}, where ab is an abbreviation of the two-element subset {a, b} of E = [n].

Appendix B. Coxeter matroid polytope

Let ∆ be a convex polytope in the real affine Euclidean space ARn. For any two vertices α and β of ∆ which
are adjacent (i.e., connected by an edge) we can consider the reflection sαβ in the mirror of symmetry of the
edge [αβ]. All these reflections generate a group W (∆) of affine isometries of the space ARn. We say that
∆ is a Coxeter matroid polytope if the group W (∆) is finite.

If ∆ is a matroid polytope, then W is a finite reflection group and hence a Coxeter group. Being a finite
group, W fixes the barycenter of each of its (finite) orbits, so we may assume without loss of generality that
W fixes the origin of the vector space Rn and hence is a linear group. By definition of W all vertices of ∆
belong to one W -orbit. Choose a vertex δ of ∆, and let E be a chamber such that δ belongs to the closure
E of E. Choose the simple system Π with corresponding system of simple reflections r1, ..., rm such that E
is the fundamental chamber with respect to Π. It follows from ([1], Theorem 5.5.1) that the isotropy group
P of δ is a standard parabolic subgroup of W , i.e., it is generated by some ri’s.

Therefore, the set of vertices of ∆ can be identified with some subset M of the factor set WP . Now the
following result is an immediate corollary of Theorem 3.5.2:

Theorem B.0.1. If ∆ is a matroid polytope, then M is a Coxeter matroid for W and P .

By the Gelfand-Serganova theorem, the converse is also true: if M is a Coxeter matroid, then its canonical
matroid polytope ∆M is a Coxeter matroid polytope.
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